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Abstract
We discuss a numerical algorithm for solving nonlinear integro-differential
equations, and illustrate our findings for the particular case of Volterra
type equations. The algorithm combines a perturbation approach meant
to render a linearized version of the problem and a spectral method
where unknown functions are expanded in terms of Chebyshev polynomials
(El-gendi’s method). This approach is shown to be suitable for the calculation
of two-point Green functions required in next-to-leading order studies of time-
dependent quantum field theory.

PACS numbers: 02.70.−c, 02.30.Mv, 02.60.Jh, 02.70.Bf, 02.60.Nm, 02.60.Lj

1. Introduction

Astrophysical applications related to the physics of the early universe, as well as challenges
posed by the physics programs at new heavy ion accelerators, have triggered a renewed interest
in the understanding of real time processes in the context of quantum field theory. With the
advent of new computer technology and the recent success of new computational schemes,
nonequilibrium phenomena which have been previously studied only in the framework mean-
field theory [1–3] are now being revisited, and more complex next-to-leading order approaches
[4–7] are being used in an attempt to clarify the role played by the rescattering mechanism,
which is responsible for driving an out of equilibrium system back to equilibrium. Of
particular interest is the study of the dynamics of phase transitions and particle production
following a relativistic heavy-ion collision. One way of approaching this study is based on
solving Schwinger–Dyson equations within the closed time path (CTP) formulation [8]. This
formalism has been recently shown to provide good approximations of the real time evolution
of the system both in quantum mechanics and in (1+1)-dimensional classical field theory [9],
where direct comparisons with exact calculations can be performed.
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The key element in carrying out such studies is related to the calculation of the two-point
Green function, which is solved for self-consistently with the equations of motion for the
fields. The two-point Green function gives rise to Volterra type integral or integro-differential
equations. In the process of extending our study to encompass a higher number of spatial
dimensions, i.e. 2+1 and 3+1 field theory, we are faced with the challenge of coping with
constraints dictated both by storage and time-related computational limits. Thus our interest
lies in designing algorithms which feature spectral convergence in order to achieve convergence
with minimum storage requirements. In addition, we also desire these algorithms to scale
when ported to massively multiprocessor (MPP) machines, so that solutions can be obtained
in a reasonable amount of time.

Algorithms for Volterra integral and integro-differential equations usually start out at the
lower end of the domain, a, and march out from x = a, building up the solution as they
go [10]. Such methods are serial by nature, and are, in general, not suitable for parallel
implementation on a MPP machine. Even so, clever approaches to already existing methods
can provide algorithms that take advantage of a parallel processing computer: Shaw [11] has
shown recently that once the starting values of the approximation are obtained, one can design
a global approach where successive approximations of the solution over the entire domain
x ∈ [a, b] can be evaluated simultaneously.

In a recent paper [12] one of us has discussed a spectral method [13] of solving some types
of equations of interest for the study of time-dependent nonequilibrium problems in quantum
field theory. The gist of the method consists in expanding out the unknown function in terms of
Chebyshev polynomials on a suitable grid, thus reducing the problem to finding the numerical
solution of a system of linear equations. The main advantage of this method over standard
finite-difference type methods resides in the spectral character of its convergence. This is
related in part to the fact that Chebyshev type methods use a non-uniform grid, while finite-
difference methods require a uniform grid. Usually, there is a trade-off between computational
time and storage requirements, and a balanced solution must be reached on a case-by-case
basis. Spectral methods are more expensive per point as the matrices may be considerably
denser than in the finite-difference case, but we require considerably fewer grid points in order
to achieve the same degree of accuracy. By expanding the unknown function on a compact
support in Chebyshev polynomials and using a partition of the domain based either on the set
of (N + 1) extrema or on the set of N zeros of TN(x)—the Chebyshev polynomial of first kind
of degree N—we in fact replace a continuous problem by a discrete one. For non-singular
functions the discrete orthogonality and completeness relations for Chebyshev polynomials
at the above grid points assure a de facto exact expansion for an arbitrary finite value N.
In practice, however, one has to compute derivatives and integrals of the unknown function
at the collocation points, and the Chebyshev expansion provides only an approximation for
these subsequent computations. These errors, together with the finite accuracy of numerical
methods needed in conjunction with the Chebyshev expansion, conspire in order to deteriorate
the accuracy of the solution at very small values of N.

The paper is organized as follows. In section 2, for comparison purposes, we start by
reviewing a finite-difference approach for the numerical solution of Volterra type integro-
differential equations. We review the general framework of the Chebyshev-expansion method
in section 3, and illustrate our approach for the case of Volterra integro-differential equations.
In section 4, we present a complete assessment of the convergence and computational cost
of the proposed method for the case of a test problem, and compare with results obtained
via the finite-difference method. In section 5, we discuss the relevant aspects of a large-
scale calculation arising in the study of time-dependent quantum field theory, for which our
numerical strategy is particularly suitable. We present our conclusions in section 6.



Parallel algorithm with spectral convergence 5317

2. Stable multi-step method for Volterra type equations

The type of problems arising in the study of time-dependent nonequilibrium quantum field
theory via a Schwinger–Dyson equation approach, can be formally reduced to the general case
of a nonlinear Volterra integro-differential equation. Direct methods for solving nonlinear
Volterra integral and integro-differential equations are inherently serial and therefore have not
received much attention for use on a parallel computer. It is worth mentioning here the work
of Crisci et al [14] who concentrated on the stability aspects of parallel iteration of Volterra-
Runge–Kutta (VRK) methods for solving Volterra integral equations on parallel computers.
VRK methods are step-by-step methods and can take advantage of parallel architecture.
Sommeijer et al [15] covered the stability of parallel block methods for ordinary differential
equations (ODE) and included equations of the integro-differential type in their discussion.

We summarize here a recent parallel algorithm [11] which concentrates on modifying
the algorithmic side of the numerical solution process for use on a parallel processor while
consciously utilizing methods that are known to be stable. The algorithm is in effect an
example of a higher-order finite-difference approach, and we use this approach to compare
with the spectral method presented later in this paper.

For illustration, let us consider a first-order nonlinear Volterra integro-differential equation
of the form

y′(x) = F [x,y, Z[x; y]] x ∈ [a, b] (1)

with

Z[x; y] =
∫ x

a

K[x, t; y(t)] dt (2)

and subject to the initial condition

y(a) = y0. (3)

Let IN be a partition of I = [a, b], where IN = {xN = a + nh, n = 0(1)N,Nh = (b − a)}.
The problem is to find approximations yn to the solution y(xn) of equations (1)–(3) for each
xn ∈ IN . A k-step method for an integro-differential equation of the form (1) is given by

yn+1 = yn + h

k∑
j=0

wjF(xn−j , yn−j , zn−j ) n = k(1)N (4)

where

zn−j = h

n−j∑
i=0

cn−j,iK(xn−j , xi , yi) j = 0(1)k y0 = y(a). (5)

The weights wi depend on the k-step method selected and the weights ci,j are those of a
standard quadrature formula for integrating a function whose value is known at equally spaced
steps, such as a Newton–Cotes or Newton–Gregory quadrature rule. For our multi-step (k = 4)

method [10] we choose the fourth-order Adams–Bashforth predictor

y0
k+1 = yk +

h

24
[55F(xk, yk, zk) − 59F(xk−1, yk−1, zk−1) + 37F(xk−2, yk−2, zk−2)

− 9F(xk−3, yk−3, zk−3)] (6)

and the Adams–Moulton corrector

yk+1 = yk +
h

24

[
9F

(
xk+1, y

0
k+1, zk+1

)
+ 19F(xk, yk, zk) − 5F(xk−1, yk−1, zk−1)

+ F(xk−2, yk−2, zk−2)
]

(7)
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while the integral term (2) is calculated based on the Newton–Gregory quadrature formula.
We use a fourth-order Runge–Kutta method in order to start out the calculation.

In order to make the algorithm suitable for parallel processing, it is useful to recall that
a standard quadrature method based on an uniform grid for the integral term zi requires
knowledge of the integrand function at the abscissas in the interval [x0, xi]. This is obviously
a serial process and not a good candidate for parallelization. It can be observed, however,
that once the starting values are obtained, all approximations zi with i = 0(1)k − 1 can
simultaneously be evaluated up to and including xk−1. After that, once a value of yj

corresponding to a new step xj is established via the predictor–corrector method, all values zi

with i = j (1)N can also be evaluated simultaneously. This observation makes the following
algorithm possible:

(i) find the starting values (yi, zi) with i = 0(1)k − 1;
(ii) do i = k,N :

add contributions to zi corresponding to (xj , yj ), where j = 0(1)k − 1;

(iii) do i = k,N :

(a) predict yi;
(b) estimate zi from (xi, yi);

(c) correct yi;
(d) do j = i, N :

update zj by adding the contribution corresponding to (xi, yi).

The above numerical algorithm is implemented using the OpenMP style directives for
the Portland Group’s pgf77 FORTRAN compiler, and reportedly shows good scalability on a
shared-memory multiprocessor. The speedup of the finite-difference method is best for a large
number of grid points which, correspondingly, gives a better solution approximation. For
example, with N = 5120 and 4 processors the speedup is 3.86, a good measure of processor
utilization.

While the preceding algorithm performs well on a shared memory platform, it does not
port easily to an MPP machine. Before we comment on the efficiency of the algorithm, let us
make two general comments: firstly, we denote by Tcalc and Tcomm the time required to perform
a floating-point operation and the time required to send a floating-point number, respectively.
Secondly, we will ignore for simplicity the effect of message sizes on communication costs,
and assume throughout that the ratio Tcomm/Tcalc is independent of N.

Returning now, to our proposed algorithm, we remark that the communication cost for the
corresponding implementation involves only the integral terms. Even so, using the message-
passing interface (MPI) protocol the communication cost is 4 log N for the starting values
and up to N2 for the remainder of the algorithm which gives a total of (N2 + 4 log N)Tcomm.
The total number of flops depends on the specific application but a reasonable measure is the
number of function evaluations which is given by (N2 + 4N)Tcalc. The ratio of communication
to computation

N2 + 4 log N

N2 + 4N

Tcomm

Tcalc

approaches a constant value as N gets larger. The communication overhead problem can be
relaxed by employing a spectral method discussed in the following section, the improvement
being especially significant for a multi-dimensional problem of the type required by our
nonequilibrium quantum field theory calculations [9].
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3. Spectral method with Chebyshev polynomials

Consider the N + 1 extrema of the Chebyshev polynomial of the first kind of degree N, TN(x).
This set defines a non-uniform grid in the interval [−1, 1], as

x̃k = cos

(
πk

n

)
k = 0(1)N. (8)

On this grid, the Chebyshev polynomials of degree i < n obey discrete orthogonality relations
N∑

k=0

′′Ti(x̃k)Tj (x̃k) = βiδij (9)

where the constants βi are

βi =



N

2
i �= 0, N

N i = 0, N.

Here, the summation symbol with double primes denotes a sum with both the first and last
terms halved. We approximate an arbitrary continuous function of bounded variation f (x) in
the interval [−1, 1], as

f (x) ≈
N∑

j=0

′′bjTj (x) (10)

with

bj = 2

N

N∑
k=0

′′f (x̃k)Tj (x̃k) j = 0(1)N. (11)

Equation (10) is exact at x equal to x̃k given by equation (8). Based on equation (10), we can
also approximate derivatives and integrals as

f ′(x) ≈
N∑

k=0

′′f (x̃k)
2

N

N∑
j=0

′′Tj (x̃k)T
′
j (x). (12)

and ∫ x

−1
f (t) dt ≈

N∑
k=0

′′f (x̃k)
2

N

N∑
j=0

′′Tj (x̃k)

∫ x

−1
Tj (t) dt . (13)

In matrix format, we have[∫ x

−1
f (t) dt

]
≈ S̃[f ] (14)

[f ′(x)] ≈ D̃[f ]. (15)

The elements of the column matrix [f ] are given by f (x̃k), k = 0(1)N . The right-hand side of
equations (14) and (15) gives the values of the integral

∫ x

−1 f (t) dt and the derivative f ′(x) at
the corresponding grid points, respectively. The actual values of the elements of the matrices
S̃ and D̃ can be derived using equations (12) and (13).

In order to illustrate the Chebyshev algorithm, we consider again the case of a first-order
nonlinear Volterra integro-differential equation of the form

y′(x) = F [x,y, Z[x; y]] x ∈ [a, b]

Z[x; y] =
∫ x

a

K[x, t; y(t)] dt
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with the initial condition

y(a) = y0.

Here we make no explicit restrictions on the actual form of the function F [x,y, Z[x; y]], so
both linear and nonlinear equations are included. We determine the unknown function y(x)

using a perturbation approach: we start with an initial guess of the solution y0(x) that satisfies
the initial condition y0(a) = y0, and write

y(x) = y0(x) + ε(x)

with ε(x) being a variation obeying the initial condition

ε(a) = 0. (16)

Hence, the original problem reduces to finding the perturbation ε(x), and improving the initial
guess in an iterative fashion.

We use the Taylor expansion of F [x,y, Z[x; y]] about y(x) = y0(x) and keep only the
linear terms in ε(x) to obtain an equation for the variation ε(x),

ε′(x) − ∂F [x,y, Z[x; y]]

∂y(x)

∣∣∣∣
y(x)=y0(x)

ε(x)

− ∂F [x,y, Z[x; y]]

∂Z[x; y]

∣∣∣∣
y(x)=y0(x)

∫ x

a

∂K[x, t; y(t)]

∂y(x)

∣∣∣∣
y(x)=y0(x)

ε(t) dt

= −y′
0(x) + F [x,y0(x), Z[x; y0(x)]]. (17)

Equation (17) is of the general form (18)

ε ′(x) = q[x, ε(x)] + r(x) (18)

where

q[x, ε(x)] = ∂F [x,y, Z[x; y]]

∂y(x)

∣∣∣∣
y(x)=y0(x)

ε(x)

+
∂F [x,y, Z[x; y]]

∂Z[x; y]

∣∣∣∣
y(x)=y0(x)

∫ x

a

∂K[x, t; y(t)]

∂y(x)

∣∣∣∣
y(x)=y0(x)

ε(t) dt

and

r(x) = −y′
0(x) − F [x,y0(x), Z[x; y]]

together with the initial condition given by (16). We replace equations (18) and (16) by an
integral equation, obtained by integrating equation (18) and using the initial condition (16) to
choose the lower bound of the integral. We obtain

ε(x) =
∫ x

a

q[t, ε(t)] dt +
∫ x

a

r(t) dt (19)

which is in fact a linear Volterra integral equation of the second kind. Using the techniques
developed in the previous section to calculate integrals, the integral equation (19) can be
transformed into a linear system of equations. A practical implementation of this algorithm is
illustrated via a test problem in the following section.
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4. Test problem

Following Shaw [11], we consider the test problem

y(x) = x e1−y(x) − 1

(1 + x)2
− x −

∫ x

0

x

(1 + t)2
e1−y(t) dt (20)

y(0) = y0 = 1 x ∈ [0, 1] (21)

which has the exact solution

y(x) = 1

1 + x
. (22)

We shall use the initial guess y0(x) = y0 cos(x), so that y0(0) = y0. The equation for the
variation ε(x) is

ε(x) −
∫ x

0
t e1−y0(t)ε(t) dt +

∫ x

0
ds

∫ s

0

s e1−y0(t)

(1 + t)2
ε(t) dt

= −y0(x) + y0 +
∫ x

0

[
t e1−y0(t) − 1

(1 + t)2
− t

]
dt −

∫ x

0
ds

∫ s

0

s e1−y0(t)

(1 + t)2
dt .

(23)

In matrix format and using the Chebyshev expansion presented above, the variation ε(x) will
be obtained as the solution of linear system of equations

A[ε] = C (24)

with matrices A and C given as

Aij = δij − S̃ij

[
t e1−y0(t)

]
j

+ S̃ikx̃kS̃kj

[
e1−y0(t)

(1 + t)2

]
j

i, j = 0(1)N

Ci = −[y0(t)]i + y0 + S̃ik

[
t e1−y0(t) − 1

(1 + t)2
− t

]
k

− S̃ik x̃k S̃k�

[
e1−y0(t)

(1 + t)2

]
�

.

From a computational point of view, the computer time is spent initializing the matrix
elements Aij and Cj on one hand, and finding the solution of (24) on the other. On the first
matter, the calculation decouples nicely, and once we have the vector [y0], we can calculate
{Ci,Aij , j = 0(1)N} in parallel for i = 0(1)N . The algorithm is as follows:

(i) calculate [y0] = [y0] + [ε];
(ii) broadcast [y0];

(iii) do i = 0, N :
(a) master to slave: send i;
(b) slave: compute {Ci,Aij , j = 0(1)N};
(c) slave to master: return {Ci,Aij , j = 0(1)N}.

Regarding the second step, i.e. solving the linear system of equations, the best choice is
to use the machine specific subroutines, which generally outperform hand-coded solutions.
When such subroutines are not available, as in the case of a Linux based PC cluster for instance,
one can use one of the MPI implementations available on the market. We shall see that the
efficiency of the equation solver is critical to the success of the parallel implementation of the
Chebyshev-expansion approach. In order to illustrate this aspect, we perform two calculations,
first using a LU factorization algorithm, and second using an iterative biconjugate gradient
algorithm. These are standard algorithms [10] for solving systems of linear equations, but
their impact on the general efficiency of the approach is quite different.
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Figure 1. Average CPU time versus the number of grid points for the Chebyshev-expansion
approach using either the LU decomposition (squares) or the biconjugate gradient method (crosses)
and finite-difference approach (circles).
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Figure 2. Convergence of the Chebyshev result (full circles) compared with the finite-difference
result (open circles), versus the number of grid points.

4.1. Serial case

Figure 1 depicts the average CPU time required to complete the calculation for the various
methods. Figure 2 illustrates the convergence of the two numerical methods. The spectral
character of the method based on Chebyshev polynomials allows for an excellent representation
of the solution for N > 12. We base our findings on a σ < 10−10 criterion, where σ denotes
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Figure 3. Number of iterations versus the number of grid points for the Chebyshev method.

the sum of all absolute departures of the calculated values from the exact ones, at the grid
points.

The number of iterations required to achieve the desired accuracy in the Chebyshev case
is depicted in figure 3. The number of iterations becomes flat for N > 12, and stays constant
(17 iterations) even for very large values of N. The higher number of iterations corresponding
to the lower values of N represents an indication of an insufficient number of Chebyshev
grid points: the exact solution cannot be accurately represented as a polynomial of degree
N for x ∈ [0, 1]. It is interesting to note that for N = 12–16, a reasonable lower domain
for the representation of the solution using Chebyshev polynomials, the reported CPU time
is so small that for our test problem there is no real justification for porting the algorithm to
a MPP machine. This situation will change for multi-dimensional problems such as those
encountered in our nonequilibrium quantum field theory studies.

4.2. Parallel case

The LU factorization algorithm is an algorithm of order N3 and consequently, most of the
CPU time is spent solving the linear system of equations (see figure 4). As a consequence, a
parallel implementation of the LU algorithm is very difficult. Figure 5 shows how the average
CPU time changes with the available number of processors. Here we use a very simple MPI
implementation of the LU algorithm as presented in [16]. Even though we could certainly
achieve better performance by employing a sophisticated LU equation solver, the results are
typical. Since the actual size of the matrices involved is small, the communication overhead
is overwhelming and the execution time does not scale with the number of processors.

Fortunately, even for dense matrices and small values of the number of grid points N, one
can achieve a good parallel efficiency. By employing an iterative method such as the iterative
biconjugate gradient method, one can render the time required to solve the system of linear
equations negligible compared with the time required to initialize the relevant matrices, which
in turn is only slightly more expensive than the initialization process of the LU factorization
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Figure 4. Total CPU time (full circles) and CPU time spent carrying out the LU decomposition
(open circles), versus the number of grid points (1 CPU case).

Figure 5. Scaling of the average CPU time with the number of available processors for the
Chebyshev-expansion approach and the LU factorization algorithm (N = 500).

algorithm. The initialization process can be parallelized using the algorithm presented above
and the results are depicted in figure 6.

It appears that by using the biconjugate gradient method the efficiency of the parallel
code has improved considerably. However, the average CPU time saturates to give an overall
speedup of 3.5. This can be understood by analysing the computation and communication
requirements for our particular problem. The calculation cost to initialize the matrices
A and C is roughly given by the number of floating-point multiplications and additions
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Figure 6. Scaling of the average CPU time with the number of available processors for the
Chebyshev-expansion approach and the biconjugate gradient algorithm (N = 500).

(7N2 + 3N)Tcalc, while the communication cost is given by (N2 + 2N)Tcomm. Therefore, the
ratio of communication to computation is

N2 + 2N

7N2 + 3N

Tcomm

Tcalc
.

As in the finite-difference case, this ratio approaches a constant value as N gets larger and it
becomes apparent that the communication overhead is still a problem.

However, multi-dimensional applications such as those presented in [9] require
complicated matrix element calculation. In such cases, the process of initializing the matrices
A and C is quite involved, and the ratio of the communication time relative to the computation
time becomes favourable. In addition, the matrix A becomes sparse and the size of the linear
system of equations is substantially larger, thus one can also take advantage of existing parallel
implementation of the iterative biconjugate gradient algorithm [17]. Such problems benefit
heavily from an adequate parallelization of the code. We will discuss such an example in the
following section.

5. Volterra-like integral equations for a two-point Green function

Schwinger, Bakshi, Mahanthappa and Keldysh [8] have established how to formulate an initial
value problem in quantum field theory. The formalism is based on a generating functional,
and the evolution of the density matrix requires both a forward evolution from zero to t and
a backward one from t to zero. This involves [18] both positive and negative time ordered
operators in the evolution of the observable operators and the introduction of two currents into
the path integral for the generating functional. Time integrals are then replaced by integrals
along the closed time path (CTP) in the complex time plane shown in figure 7. We have∫

C
F(t) dt =

∫ ∞

0:C+

F+(t) dt −
∫ ∞

0:C−
F−(t) dt . (25)
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t - plane

Figure 7. Complex time contour C for the closed time path integrals.

Using the CTP contour, the full closed time path Green function for the two-point functions is

G(t, t ′) = G>(t, t ′)�C(t, t ′) + G<(t, t ′)�C(t ′, t)

in terms of the Wightman functions, G>,<(t, t ′), where the CTP step function �C(t, t ′) is
defined by

�C(t, t ′) =




�(t, t ′) for t on C+ and t ′ on C+

0 for t on C+ and t ′ on C−
1 for t on C− and t ′ on C+

�(t ′, t) for t on C− and t ′ on C−.

(26)

For complete details of this formalism and various applications, we refer the reader to the
original literature [8, 18], and we confine ourselves to discussing how our Chebyshev-
expansion approach is applied to the computation of the two-point Green function.

For simplicity, we consider now the quantum mechanical limit of quantum field theory
(0+1 dimensions). In this limit, we are generally faced with the problem of numerically finding
the solution of equation

G(t, t ′) = G(t, t ′) −
∫
C

dt ′′Q(t, t ′′)G(t ′′, t ′). (27)

Here, the Green functions, G(t, t ′) and G(t, t ′), are symmetric in the sense that G>(t, t ′) =
G<(t ′, t), and obey the additional condition

G>,<(t, t ′) = −G∗
<,>(t, t ′) = G<,>(t ′, t). (28)

The function Q(t, t ′) obeys less stringent symmetries

Q>,<(t, t ′) = −Q∗
<,>(t, t ′) �= Q<,>(t ′, t) (29)

which is always the case when Q(t, t ′) has the form

Q(t, t ′) =
∫
C

dt ′′A(t, t ′′)B(t ′′, t ′) (30)

where A(t, t ′) and B(t, t ′) satisfy (28).
We can further write equation (28) as

Re{G>(t, t ′)} = −Re{G<(t, t ′)} (31)

Im{G>(t, t ′)} = Im{G<(t, t ′)} (32)
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or

G>(t, t ′) − G∗
<(t, t ′) = 2 Re{G>(t, t ′)} (33)

G>(t, t ′) + G∗
<(t, t ′) = 2 Im{G>(t, t ′)}. (34)

Hence, a Green function G(t, t ′) is fully determined by the component G>(t, t ′) =
Re{G>(t, t ′)} + i Im{G>(t, t ′)}, with t ′ � t . Thus, in order to obtain the solution of
equation (27), we only need to solve

G>(t, t ′) = G>(t, t ′) − 2
∫ t

0
dt ′′ Re{Q>(t, t ′′)}G>(t ′′, t ′) + 2

∫ t ′

0
dt ′′Q>(t, t ′′) Re{G>(t ′′, t ′)}.

(35)

We separate the real and the imaginary parts of (35) and obtain the system of integral equations

Re{G>(t, t ′)} = Re{G>(t, t ′)} − 2
∫ t

0
dt ′′ Re{Q>(t, t ′′)} Re{G>(t ′′, t ′)}

+ 2
∫ t ′

0
dt ′′ Re{Q>(t, t ′′)} Re{G>(t ′′, t ′)} (36)

Im{G>(t, t ′)} = Im{G>(t, t ′)} − 2
∫ t

0
dt ′′ Re{Q>(t, t ′′)} Im{G>(t ′′, t ′)}

+ 2
∫ t ′

0
dt ′′ Im{Q>(t, t ′′)} Re{G>(t ′′, t ′)}. (37)

The above system of equations must be solved for t ′ � t . The two equations are independent,
which allows us to solve first for the real part of G>(t, t ′) and then use this result to derive the
imaginary part of G>(t, t ′).

Despite their somewhat unusual form, the above equations are two-dimensional Volterra-
like integral equations and our general discussion regarding the Chebyshev spectral method
applies. We will perform a multi-step implementation of the formalism. Let

ti = ti0(N−1)+i1 1 � i1 � N

be the grid location corresponding to the collocation point i1 of the interval labelled i0 + 1.
Then, the discrete correspondent of equation (35) is

G>(ti , tj ) = G>(ti , tj ) −
i0−1∑
k0=0

N∑
k1=1

[
2S̃Nk1

]
Re

{
Q>

(
ti , tk[=k0(N−1)+k1]

)}G>(tk, tj )

−
N∑

k1=1

[
2S̃i1k1

]
Re

{
Q>

(
ti , tk[=i0(N−1)+k1]

)}G>(tk, tj )

+
j0−1∑
k0=0

N∑
k1=1

[
2S̃Nk1

]
Q>

(
ti , tk[=k0(N−1)+k1]

)
Re{G>(tk, tj )}

+
N∑

k1=1

[
2S̃j1k1

]
Q>

(
ti, tk[=j0(N−1)+k1]

)
Re{G>(tk, tj )} (38)

with tj � ti .
We will refer now to figures 8 and 9. Equation (39) involves values of G>(tk, tj ), for

which tj > tk. In such cases, we use the symmetry G∗
>(tj , tk), which relates to the values of
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Figure 8. G(tk, tj ) contributions to the integral
∫ ti

0 Q(ti , tk)G(tk, tj ) dtk with tj � ti .
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Figure 9. G(tk, tj ) contributions to the integral
∫ tj

0 Q(ti , tk)G(tk, tj ) dtk with tj � ti .

the two-point function located in the domain of interest. For the time interval (i0 + 1) the size
of the linear system of equations we need to solve is
1
2 (i0 + 1)(N − 1)[(i0 + 1)(N − 1) + 1] − 1

2 i0(N − 1)[i0(N − 1) + 1]

= i0(N − 1)2 + 1
2N(N − 1)

or of order
(
i0 + 1

2

)
(N − 1)2. In practice, the value of N is taken between 16 and 32.
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Table 1. Summary regarding the calculation of ReG(ti , tj ) at step i0 + 1.

Integral Domain Non-zero elements Additions Multiplications
∫ ti

0 dtk j � i0(N − 1) N i0N (2i0 + 1)N∫ tj
0 dtk j � i0(N − 1) 0 (j0 + 1)N (2j0 + 1)N

Total N + 1 (i0 + j0 + 1)N + 1 2(i0 + j0 + 1)N

∫ ti
0 dtk j > i0(N − 1) (i0 + 1)(N − 1) + 1 i0 (i0 + 1)N∫ tj
0 dtk j > i0(N − 1) (i0 + 1)(N − 1) + 1 i0 (i0 + 1)N

Total (i0 + 1)(N − 1) + 2 (i0 + 1)(N + 1) 2(i0 + 1)N

Table 2. Summary regarding the calculation of ImG(ti , tj ) at step i0 + 1.

Integral Domain Non-zero elements Additions Multiplications
∫ ti

0 dtk j � i0(N − 1) N i0N (2i0 + 1)N∫ tj
0 dtk j � i0(N − 1) 0 (j0 + 1)N (2j0 + 1)N

Total N + 1 (i0 + j0 + 1)N + 1 2(i0 + j0 + 1)N

∫ ti
0 dtk j > i0(N − 1) (i0 + 1)(N − 1) + 1 i0 (i0 + 1)N∫ tj
0 dtk j > i0(N − 1) 0 (i0 + 1)N (2i0 + 1)N

Total (i0 + 1)(N − 1) + 2 (i0 + 1)(N + 1) (3i0 + 2)N

Table 3. Global communication and computation data regarding the calculation of G(ti , tj ) at step
i0 + 1.

Equation Floating-point numbers to be sent Floating-point operations

Re G(t, t ′) (3i0 + 1.5)N2 − (3i0 + 0.5)N (5.5i0 + 2)(i0 + 1)N2 + Ni0

ImG(t, t ′) (3i0 + 1.5)N2 − (3i0 + 0.5)N [(5.5i0 + 2)(i0 + 1) + i0]N2 + Ni0

Tables 1 and 2 summarize the number of floating-point operations performed in order to
compute the non-vanishing matrix elements corresponding to a given i and j (j < i).

We can now calculate the ratio of communication to computation time, by noting that the
numbers in the tables above get multiplied by N, corresponding to the number of collocation
points in each time step and summing over the number of steps, i.e. we evaluate

N[if j > i0(N − 1)] + N

i0∑
j0=1

[if j � i0(N − 1)].

In table 3 we summarize all relevant estimates regarding the computation cost for a fixed value
of i. In order to estimate the total communication and computation cost, respectively, these
numbers must be multiplied by an additional factor of N, corresponding to the number of
possible values of i in a time step. This factor is not relevant for estimating the communication
overhead, but it must be remembered when one infers the sparsity of the corresponding system
of equations.

To conclude, we observe that the communication to computation ratio approaches

1

2(i0 + 1)

Tcomm

Tcalc
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for large values of i0. Therefore, for this problem the communication overhead is reduced
substantially in the later stages of the calculation. In practice, this ratio is actually much
better, as we compute the functions G(t, t ′) and Q(t, t ′) on the fly, and this adds considerably
to the computational effort. Finally, the sparsity of the resulting systems of equations goes
to 2/(i0N) for large values of i0 and N, which supports our choice for an iterative equation
solver.

6. Conclusions

We have presented a numerical method suitable for solving nonlinear integral and integro-
differential equations on a massively multiprocessor machine. Our approach is essentially
a standard perturbative approach, where one calculates corrections to an initial guess of the
solution. The initial guess is designed to satisfy the boundary conditions, and corrections are
expanded in a complete basis of N Chebyshev polynomials on the grid of (N + 1) extrema
of TN(x), the Chebyshev polynomial of first kind of degree N. The spectral character of the
convergence of the Chebyshev-expansion approach is the key element in keeping low the
number of grid points. From a computational point of view, each iteration involves two stages,
namely initializing the relevant matrices and solving the linear system of equations. Both
stages can be rendered parallel in a suitable manner, and the efficiency of the code increases
when applied to complicated multi-step, multi-dimensional problems.

The algorithm discussed in this paper represents the backbone of current investigations
of the equilibrium and nonequilibrium properties of various phenomenological Lagrangians.
In particular, we are interested in studying the properties of the chiral phase transition at
finite density for a (2+1)-dimensional four-fermion interaction as well as the dynamics of
two-dimensional QCD, with the ultimate goal of indirectly obtaining insights regarding the
time evolution of a quark–gluon plasma produced following a relativistic heavy-ion collision.
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